
Chapter 2 

Theory of Financial Laws 

2.1. Indifference relations and exchange laws for simple financial operations 

Let us consider again the indifference relation, indicated by  in (1.1), which 
depends on the judgment of an economic operator which gives rise to indifferent 
supplies with the process described in section 1.2.  

In a loan operation of the amount S at time T the economic operator can 
calculate the repayment value S' in T' > T such that (T',S') (T,S). Therefore, S'  S is 
calculated according to a function (subjective) of S, T, T' and it is written as 

S' = fc (S, T; T') (2.1) 

where fc is the accumulation function (given that in S' the repayment of S and the 
incorporation of the possible interest is included) that realizes indifference. 

In a discounting operation, at time T" <T', of amount S' with maturity T', let  
S"  S' be the discounted value so that subjectively (T",S")  (T',S'). We then have  

S" = fa (S', T'; T")  (2.2) 

where fa is the discounting function (because S' is discounted at time T" with a 
possible reduction due to anticipation of availability) that realizes indifference. 

It is obvious that if two operators, one at each side of a loan or discounting 
contract, want to realize an advantageous contract according to their preference 
scale, it is not always possible for them to do so.  
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It can be the case that, in a loan in T' of the principal S', indicating by S"a the 
indifferent accumulated amount (= min acceptable) for the lender to cash in T" and by 
S"b the indifferent accumulated amount (= max acceptable) for the borrower to pay 
out in T", if S"b<S"a the contract is not stipulated. In the same way, we can prove that, 
in a discounting operation of the capital S' at maturity T', indicating by S"a the present 
indifferent value (= max acceptable) for the lender to pay out in T" < T ' and by S"b 
the present indifferent value (= min acceptable) for the borrower to cash in T" < T ', if 
S"a < S"b the contract is not stipulated. 

EXAMPLE 2.1.– Let us suppose that Mr. Robert, who is lending the amount S' at 
time T' for the period (T',T"), wants to cash in T" at least 1.09.S'. At the same time 
Mr. George, who is borrowing S' for the same time interval, wants to pay back in T" 
no more than 1.07.S'. It is obvious that in this way they will not proceed with the 
loan contract. Indeed: 

– with S" < 1.07.S', the lender prefers not to lend; 

– with 1.07.S' <S" < 1.09.S', the lender prefers not to lend and the borrower 
prefers not to borrow; 

– with S" > 1.09.S', the borrower prefers not to borrow. 

EXAMPLE 2.2.– Let us suppose that Mr. John wants to discount a bill from Mr. 
Tom, which is amount S' for the time from T' to T"<T' offering a discounted value 
not greater than 0.92.S', while Mr. Tom wants to offer this discount for an amount 
not lower than 0.94.S'. It is clear that the contract cannot be reached, because each 
discounted amount is considered disadvantageous by at least one of the parties. 

To further consider the economic theory of market prices, we carry on our 
analysis using objective logic and supposing that the operators, in a specific market, 
want a fair contract between two supplies (T,S) and (T',S') in a loan, if their 
fundamental quantities satisfy equation (2.1); and in the same way, for a discount, 
which is a type of loan, if equation (2.2) is satisfied. We will now talk about a fair 
contract if equation (2.1) or equation (2.2) is satisfied, but as favorable (or 
unfavorable) for one of the parties if the equations are not satisfied. Trade contracts 
between two supplies (T',S') and (T",S") give rise to simple financial operations. As 
already mentioned in Chapter 1: 

– if T" > T' (= loan or investment), the parties consider fair the interest S"-S' as 
the payment for the lending of S' from T' to T", as delayed payment in T"; then S" is 
called accumulated amount in T" of the amount S' lent in T'; 
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– if T" < T' (= discount or anticipation), both parties consider fair the interest  
S'-S" for the discount of S' from T' to T", as advance payment in T"; then S" is called 
discounted value from time T" of the amount S' to maturity T'1. 

The indifference relation thus assumes a collective value. The function fc defined 
in equation (2.1) is an accumulation law (or interest law), while the function fa 
defined in equation (2.2) is a discount law. Referring now to the case of positive 
interest and fixing S and T in equation (2.1), the value S' is an increasing function of 
T'; fixing S' and T' in equation (2.2), and the value S" is also an increasing function 
of T", because it decreases when T" decreases. 

Applying equation (2.1) and then equation (2.2) with T" =T, we obtain the 
present value in T of the accumulated amount in T' of S invested in T  T', given by  

S* = fa [{ fc (S,T;T')},T';T ] (2.3) 

If (S,T,T') is S* = S, the fa neutralizes the effect of fc, acting as the inverse 
function, and the following investment or anticipation operation is called the 
corresponding operation; in this case the laws expressed by fc and fa are said to be 
conjugated.  

Unifying the cases T  T' and T>T', we can talk of an exchange law given by a 
function f that gives the amount S' payable in T' and exchangeable2 with S payable 
in T. It follows that 

S' = f (S,T;T')  (2.4) 

where if T  T' then f = fc, whereas if T >T' then f = fa . 

                                   
1 Lending and discounting operations are the same thing because in both cases there is an 
exchange of a lower amount in a previous time for a greater amount in a future time. The only 
difference is that in the first case the lower and previous amount is fixed, whereas in the 
second case the greater and future amount is fixed. 
2 We will not use “equivalent” – even if it is used in practice – in the cases that we will 
consider later where  gives rise to an equivalence relation (see footnote 6 of Chapter 1). 
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Let us consider some properties of the indifference relation :  

1) reflexive property 

If (T,S) we have (T,S )  (T,S), we will say that  satisfies the reflexive 
property3; 

2) symmetric property 

If (S,T,T'), from (T,S)  (T’,S') follows (T’,S')  (T,S), we will say that  
satisfies the symmetric property4; 

3) property of proportional amounts  

If (S,T,T'), k>0, from (T,S )  (T',S') follows (T,kS)  (T',kS'), we will say that 
 satisfies the property of proportional amounts. 

Because of criteria c) and d), if T -T the amount in T  exchangeable with S in T 
is the same as S. Therefore in the set  of financial supplies the relation  always 
satisfies the reflexive law. We can then define the exchange law for all three 
variables as 

f (S,T;T’ ) =   

fc(S,T;T’ ),  if  T < T’

         S         ,   if  T = T’    

fa(S,T;T’ ),  if  T > T’   (2.5) 

If the symmetric law holds in the considered set P, then 

S = fa[{ fc (S,T,T')},T',T ], (S,T,T'), T<T' 5  (2.6) 

In this case, recalling (2.3), the laws fc and fa are conjugated, and because of 
(2.4), (2.5) can be written in the form  

S = f [{ f (S,T,T')},T',T], (S,T,T')  (2.6') 

                                   
3 Let us recall that a binary relation  between elements a, b, ... of a set  satisfies the 

reflexive law if: a  a, a  . 

4 Let us recall that a binary relation  between elements a, b, ... of a set  satisfies the 

symmetric law if: a  b b  a, a,b  .  
5 If T>T' is given, fc and fa have to be exchanged in (2.6). 
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which remains valid with the same f if the primed values are changed with the 
unprimed values and vice versa6. 

If, in the considered set ? the property of proportional amounts holds, f as 
defined in (2.4) is linear homogenous compared to the amount7. 

2.2. Two variable laws and exchange factors 

Let us continue the analysis of exchange laws the reflexive and proportional 
amount properties assumed to be valid for . Due to the second property, it is 
possible to transform (2.1) in the multiplicative form 

S' = S. m(T,T'), T  T'  (2.1') 

where m(T,T'), increasing with respect to T', is called the accumulation factor and 
expresses the accumulation law only as a function of the two temporal variables; in 
the same way it is possible to transform (2.2) in the form 

S" = S'. a(T',T"), T'  T"  (2.2') 

where a(T',T"), increasing with respect to T", is called the discounted factor and 
expresses the discounting law only as a function of the two temporal variables. We 
will now address the two variables laws. 

The reflexive law for  is now equivalent to  

m(T,T) = a(T,T) = 1, T  (2.7) 

Furthermore if, using T" =T in systems (2.1') and (2.2'), we obtain S" =S, i.e.  
the symmetric property is valid for , the laws m(.) and a(.) satisfy 

 m(T,T') . a (T',T) = 1, T T'  (2.8) 

                                   
6 The symmetric case – far from being realistic in the contracts with companies and banks, 
due to the different conditions and onerousness of the lending market (which leads to costs 
for the companies) compared to the investment market (which leads to profits for the 
companies) – can be applied to the contracts between persons or linked companies and, from 
a theoretical point of view, makes it possible to deal with the two systems in a similar 
manner.  
7 The property of proportional amounts is normally used in theoretical schemes, but should 
only be used with smaller amounts. The financial profits for the unit of invested capital can 
change according to the value of the capital and the contractual strength of the investors. 
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 Equation (2.8) shows that conjugated laws for the same time interval give rise 
to reciprocal factors. 

When describing (2.4) in detail, we consider the exchange law of two variables 
characterized by the exchange factor z(X,Y), a pure number increasing with respect 
to Y, defined using  

   

z(X,Y) =   

m(X,Y) ,    if  X < Y

         1     ,      if   X = Y   

 a(X,Y) ,    if  X > Y   (2.5') 

(2.5 ) being a particular case of (2.5). 

To summarize, given an indifference relation , the corresponding exchange law 
expressed by the factor z(X,Y), such that (X,S1)  (Y,S2), is equivalent to  
S2 = S1 z(X,Y). The exchange factor z(X,Y) is a function defined for each couple 
(X,Y) of exchange times, which “brings” the values from X to Y forward (= 
accumulation) if X<Y and backward (= discounting) if X>Y.  

 
We will now assume that 

z(X,Y) > 0, X,Y)  (2.5") 

(considering, if needed, only the part of the definition set for the function z where 
such a condition holds) in order that it cannot be possible that an encashment 
(payment) can never be indifferent to a payment (encashment) with different time 
maturity. 

In geometric terms, let us consider the Cartesian plane OXY with the points  
G (X,Y) with the aforementioned meaning8. The exchange factor is then the point 
function z(G). Because of (2.5'), z(G)=1 if G is on the bisector of the coordinate 
axes. Furthermore, if G is over the bisector (i.e. if X<Y), then z(G) = m(X,Y) > 1; 
otherwise, if G is under the bisector (i.e. if X>Y), z(G) = a(X,Y)<1 and more 
precisely because of (2.5"): 0<a(X,Y)<19.  
                                   
8 Note that the functions m(X,Y) and a(X,Y) are defined in the disjoint half-planes X<Y and 
X>Y, i.e. over and under the bisector of coordinate axes. It can be useful to extend their 
definition on the bisector Y=X, recalling (2.7) and putting m(X,X) = a(X,X) = 1. 
9 (2.5') brings to a general formulation of exchange value of two variables, which does not 
imply the symmetry of financial relations. It follows that the law z(X,Y) can be used to 
schematize not just the time variability of the cost and profit parameters, but also their 
difference in investment and discount operations which are of interest to any company. For 
example, if a company obtains liquid assets through anticipation of future credits and uses 
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Recalling the considerations of Chapter 1 (especially criteria d) for positive 
amounts, given that z(X,Y) is the exchange value of unitary amount), in the 
hypothesis of positive returns for the money the contour curves z(X,Y) = const. are 
graphs of strictly increasing functions Y= (X)10.  

If relation  expressed by z(X,Y) satisfies the symmetric property, as a particular 
case of (2.6') the below condition follows: 

z(X,Y).z(Y,X) = 1; (X,Y)  (2.9) 

If z(X,Y) satisfies (2.9), then it defines a couple of two-variable financial interest 
and discount laws which are conjugated. 

It is obvious that if the indifference relation is symmetric, it is enough to be able 
to define z(X,Y) in one of the two half-planes to obtain the value of z in the second 
half-plane using the following rule: the values of z for points which are symmetric 
with respect to the bisector are reciprocal. In this case z(X,Y) = 1/z(Y,X), (X,Y) 
then the couples of contour curves of accumulation factor z = k >1 and discount 
factor z = 1/k <1 are functions which are mutually inverse. 

2.3. Derived quantities in the accumulation and discount laws 

In light of the laws defined in (2.1') and (2.2'), we can deduce the following 
derived quantities11.  

2.3.1. Accumulation 

As a function of the initial accumulation factor  

 iaf:= m(X,Y)  (2.10)  

                                                                                                                  
them in financial operations, and if the parameters a and m used in such an operation and 
summarized in z are not reciprocal, a non-zero spread is created. 
10 In fact if we assume z(X,Y) to be continuous and partially differentiable everywhere, it 

follows that:
 z

X
< 0, 

 z

 Y
 > 0 X,Y). Therefore, the contour curves z(X,Y) = const. are 

continuous and strictly increasing; they are graphs of functions Y = (X) invertible. In fact, 

for a theorem on implicit function, it follows that: '(X) = - 
 z

X
/

 z

Y
, where in the 

aforementioned hypothesis (X) is continuous and '(X) > 0. 
11 In this section we will denote with roman capital letters the temporal variables meaning 
time or epoch and with small roman letters, variables meaning length.  
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(:= means “equal by definition”) – which measures the multiplicative increment 
from X to Y>X of the invested capital in X. The factor is “initial” because the date X 
of investment coincides with the beginning of the time interval (X,Y) on which such 
an increment is measured. We can also define (see Figure 2.1): 

– the initial interest (per period) rate (= interest on the unitary invested capital 
in the time interval from X to Y>X) is expressed by 

iir:= m(X,Y) – 1  (2.11) 

– the initial interest (per period) intensity, expressed by 

iii  {m(X,Y) – 1}/(Y-X) = {m(X,X+t) – 1}/ t  (2.12) 

where t = Y-X > 0. 

Alternatively, still using X as the investment time and imposing X<Y<Z, the 
capital increment is measured on a time interval (Y,Z) subsequent to X, then 
continuing with respect to interval (X,Y) without disinvesting in Y, we can then 
generalize and define continuing factors, rates and intensities in the following way: 

– the continuing accumulation factor from Y to Z (= accumulated amount in  
Z=Y+u, u>0, of the unitary accumulated amount in Y=X+t, t>0, for the investment 
started in X) is expressed by 

caf  r(X;Y,Z) = m(X,Z)/m(X,Y) = m(X,Y+u)/m(X,Y)  (2.13) 

– the continuing interest (per period) rate from Y to Z (= interest for unitary 
accumulated amount in Y passing from Y to Z=Y+u, u>0, for the investment started 
in X) is expressed by 

cir  caf - 1 = {m(X,Z) - m(X,Y)}/m(X,Y)  (2.14)  

= {m(X,X + u) – m(X,Y)}/m (X,Y)  

– the continuing interest (per period) intensity from Y to Z = Y+u, u>0 is 
expressed by  

( ; , ) 1 ( , ) - ( , ) ( , ) - ( , )
cii:= =

( - ) ( , )   ( , )

r X Y Z m X Z m X Y m X Y u m X Y

Z Y Z Y m X Y u m X Y   (2.15) 
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Figure 2.1. Times in accumulation 

(2.13) is justified if we point out that if the amount K is invested at date X, the 
accumulated amount in Y has the value KY = K m(X,Y) while that in Z has the value 
KZ = K.m(X,Z). By definition r(X;Y,Z) satisfies KZ = KY r(X;Y,Z). For comparison 

r(X;Y,Z) = KZ / KY = m(X,Z) / m(X,Y)  

It is obvious that if X=Y, (2.13), (2.14) and (2.15) become respectively (2.10), 
(2.11) and (2.12), i.e. the “continuing” quantities become the “initial” quantity. In 
symbols: r(Y;Y,Z) = m(Y,Z). 

Intensity (2.15) is obtained by dividing the partial incremental ratio of function 
m( ), considered with =X and respect to  from Y to Y +u, by m(X,Y). In the 
hypothesis that m( ) is partially differentiable with respect to  with a continuous 
derivative in the interesting interval, the right limit of (2.15) then exists when u 0, 
which represents the instantaneous interest intensity12 (implying: continuing) in Y 
of an investment started in X, indicated by (X,Y). Using symbols, where “loge” is 
indicated with “ln”: 

0

= =Y

m( , + )- ( , )
, lim   

  ( , )

              / ( , ) =( , ) ln ( , )

u

Y

X Y u m X Y
X Y

u m X Y

m X Ym X m X

  (2.16) 
 

Working on the variables ,  , with , it can be concluded that is the 
logarithmic derivative (partial with respect to of m ). 

 

                                   
12 It can also be called the interest force or (but improperly from a dimensional point of 
view) instantaneous interest rate. 
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Inverting function  and the derivative operator in (2.16), the important 
relationship is obtained for continuing accumulated amount (2.13) as a function of 
the instantaneous intensity13: 

  

m(X,Y + u)

m(X,Y)
 =  (X, )dY

Y + u

e 
 (2.16') 

2.3.2. Discounting 

Let X be the final time of a financial operation (for example, the maturity of a 
credit). Analogously to accumulation, as a function of the initial discounting factor  

idf  a(X,Y) > 0  (2.17) 

we can also define (see Figure 2.2): 

– the initial per period discounting rate (= discount for unitary capital at 
maturity for the anticipation from X to Y<X), given by 

idr  1 - a(X,Y)  (2.18) 

as well as, given t = X-Y > 0: 

– the initial per period discounting intensity, which can be expressed by: 

idi  {1 - a(X,Y)}/(X-Y) = {1 - a(X,X - t)}/ t  (2.19) 

The dynamic expressions for “continuing discount” for an increment of the 
length of discount are seldom used, but they have meaning in discounting because 
of the decrease of the present value in relation to the length of anticipation. 
Therefore, we also define, in relation to the discount, the continuing per period 
intensity as well as the instantaneous intensity, related to time X>Y>Z. Indicating by 
u>0 the length of further discount Z = Y - u, we define:  

                                   
13 From (2.16) it follows that, for small u, m(X,Y). (X,Y) u linearly approximates m = 
m(X,Y+u) – m(X,Y). Furthermore, in the profitable hypothesis of the invested capital, which 
implies m(X,X+t)>1 and increasing with t, the positivity of X , X, because of (2.17) 
and of a well known property of integrals, follows. The opposite is true. A similar conclusion 
is obtained for the discounting instantaneous intensity, which will be introduced later. 
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– the continuing discounting factor from Y to Z (= present value in Z<Y of the 
present unitary value in Y<X of the capital at maturity in X, then of amount 
1/a(X,Y)), expressed by: 

cdf  a(X,Z)/a(X,Y) = a(X,Y-u)/a(X,Y)  (2.20) 

– the continuing discounting rate from Y to Z (= discount for the anticipation 
from Y to Z of the present unitary value in Y<X of a capital with maturity in X, then 
of amount 1/a(X,Y)), expressed by: 

cdr:=1 cdf
( , ) - ( , ) ( , ) - ( , - )

    
 ( , )   ( , )

a X Y a X Z a X Y a X Y u
a X Y a X Y   (2.21) 

– the continuing discounting intensity from Y to Z, expressed by: 

1- ( , ) - ( , ) ( , - ) - ( , )
cdi:=

- ( - ) ( , ) -   ( , )

fsp a X Y a X Z a X Y u a X Y

Y Z Y Z a X Y u a X Y   (2.22) 

 

Figure 2.2. Times in discounting 

Considering the limit as already calculated for the instantaneous interest 
intensity, it is possible to obtain:  

– the instantaneous discounting intensity in Y, indicated by (X,Y) and given by:  

= =

, = / ( , ) ( , ) ln ( , )
Y Y

X Y  a X Y  a X  a X

  (2.23) 

As (X,Y) is the logarithmic derivative (partial with respect to Y  X) of a(X,Y), 
by inverting the process we obtain, Z < Y, 

  

a(X,Z)

a(X,Y)
  =     (X, )d

Y
Z

e  =   (X, )d
Z
Y

e 
  (2.24) 
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2.4. Decomposable financial laws 

2.4.1. Weak and strong decomposability properties: equivalence relations  

In the case of the financial law of two variables, we consider the meaning and 
the consequences of the decomposability property, which was introduced by 
Cantelli. 

We have decomposability in an accumulation (or discounting) operation when 
investing (or discounting) a given capital available at time X, we have the same 
accumulated amount (or present value) in Z, both if we realize and reinvest 
immediately the obtained value in a intermediate time Y, or if we continue the 
financial operation. To summarize, decomposability means invariance of the result 
with respect to interruptions of the financial operation. 

With reference to the interest law m(X,Y), which follows from relation , and to 
the three times X, Y, Z, with X<Y<Z, let S2 be the realized accumulated amount in Y 
of S1 invested in X; moreover, let S3 be the accumulated amount in Z of S2 
immediately reinvested in Y. Instead S'3 is the accumulated amount Z after only one 
accumulation of S1 from X to Z. Due to (2.1')  

S2 = S1 m(X,Y); S3 = S2 m(Y,Z); S'3 = S1 m(X,Z) . (2.25) 

If 

S3 = S'3, (S1, X<Y<Z)  (2.26) 

the interest law is decomposable. It follows from (2.25) that (2.26) is equivalent to 

m(X,Y) m(Y,Z) = m(X,Z)  (2.27) 

which expresses the decomposability condition for an interest law in terms of 
accumulation factors. 

In the same way, referring to the discount law a(X,Y) following  and recalling 
(2.2'), if X > Y > Z we can define the following discounted values starting from S1, 
payable in X: 

S2 = S1 a(X,Y); S3 = S2 a(Y,Z); S'3 = S1 a (X,Z)  (2.28) 
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If  

S3 = S'3, (S1, X>Y>Z)  (2.29) 

the discount law is decomposable and because of (2.28) the decomposability 
condition for this law can be written as 

a(X,Y) a(Y,Z) = a(X,Z)  (2.30) 

Until now, we have defined in weak form the decomposability of single laws in 
accumulation or discounting operations, considering the times X, Y, Z in increasing 
or decreasing order. This signifies that we require the prospective transitivity or 
respectively the retrospective transitivity to the indifference relations, which give 
rise to the laws.14 In this case we will talk of weak decomposability. 

If instead the previous considerations are related to an exchange law following 
an indifference relation  and expressed by the factors z(X,Y) defined in (2.5'), we 
can think of extending the decomposability relation in (2.25) and (2.26) for any 
order of payment times. So the relation  satisfies the strong decomposability 
property, which bi-implies 

{(X,S1) (Y,S2) {(Y,S2) (Z,S3)   (X,S1) (Z,S3), (X,Y,Z)  (2.31) 

and then the following condition on the exchange factors: 

z(X,Y) z(Y,Z) = z(X,Z), (X,Y,Z)  (2.32) 

The following result holds:  

THEOREM A.– If and only if for the exchange law the strong decomposability is 
valid, the relation  is reflexive, symmetric and transitive, then it is an equivalence 
relation, which we denote by .  

Proof 

Sufficiency: the strong decomposability implies (2.32); putting Y = Z we obtain 
the reflexivity; putting Z = X we obtain the symmetry; the transitivity is obvious. 

Necessity: if  = , the unitary amount in X is exchangeable with z(X,Z) in Z and 
also with z(X,Y) in Y, which is exchangeable with z(X,Y) z(Y,Z) in Z (whatever order 

                                   
14 Let us recall that a binary relation  on a set  satisfies the transitivity property if (a  

b) (b c)  a  c,  a,b,c  . 
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may be among X, Y and Z because of the symmetry property); then (2.32) is also 
valid if X = Z or if Y = Z. 

Note: this argument could be developed, in a more formally complicated, but 
equipollent way, based on relation (2.31).    

Considering the relation between weak decomposability (WD) and strong 
decomposability (SD), it is obvious that the condition of SD implies WD, when X, 
Y, Z are in increasing or decreasing order from which there are only accumulation or 
discounting respectively. However, the WD does not imply SD in other cases, when 
both an accumulation and a discounting occur together. Then, if SD holds, the 
properties of an equivalence are immediately verified. In fact, considering X < Z < 
Y (analogously we could consider X > Z > Y), the SD expressed by (2.32) gives rise 
to 

m(X,Y) a(Y,Z) = m(X,Z)  (2.33) 

and the WD following the SD also implies m(X,Z) m(Z,Y) = m(X,Y), or, for (2.33), 
m(Z,Y) = m(X,Y)/m(X,Z) = 1/a(Y,Z), or also that 

m(Z,Y) a(Y,Z) = 1, Y<Z  (2.34) 

Then, because of the generic choice of times, m and a are conjugate laws, the 
financial relation is symmetric, as well as transitive, but also reflexive (it is enough 
to impose Y = Z in (2.33) obtaining a(Z,Z) = 1 and then for (2.34), m(Z,Z) = 1). 
Therefore, the relation is an equivalence; the opposite also holds. 

Let us summarize as follows. Given an indifference relation  in the hypothesis 
of proportional amount, the strong decomposability, expressed by (2.32) for the 
exchange factor z(X,Y), implies that  is reflexive, symmetric and transitive, and 
then it is an equivalence indicated by . In this case, the derived interest and 
discount laws are decomposable and conjugated to each other. 

EXAMPLE 2.3.– An investor with liquid assets invests the amount S1 at time X 
until time Y in a term deposit. A prospectively decomposable accumulation law with 
accumulation factor m(X,Y) is applied and a refund of S2 = S1 m(X,Y) is expected. 
At time Z (with X < Z < Y) the investor needs liquidity, but he cannot use the capital 
in the term deposit; therefore, the accumulated amount, given by 

S'3 = S1 m(X,Z) = 
  
S2

m(X,Z)

m(X,Y)
 =  2S

m(Z,Y)
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is not available (as when the capital is invested in a bank account); it is only 
possible to transfer the credit S2 with a bank advance, applying a retrospectively 
decomposable discounting law to a(Y,Z). In practice, in these cases the laws m(Z,Y) 
and a(Y,Z) are not conjugated, i.e. (2.34) does not hold. Thus, we do not have strong 
decomposability of the resulting exchange law, even if the laws m and a are weakly 
decomposable. We usually have a(Y,Z) < 1/m(Z,Y), i.e. the cost for discount is 
greater than that resulting from applying the conjugate law of that regulating the 
deposit. It follows that S3 < S’3 and S’3 - S3 is the cost due to the locking up of 
capital S1 until Y. The SD would cause S’3 = S3 and would avoid such cost.  

2.4.2. Equivalence classes: characteristic properties of decomposable laws  

Based on theorem A, if an indifference relation  gives rise to a strongly 
decomposable exchange law, it is an equivalence relation 15 between all elements 
(T,S) of the set  of supplies, which makes it possible to separate such supplies into 
equivalence classes. Each class is made up of financially equivalent supplies, but 
which are indifferent. However, two supplies in different classes are not equivalent 
because it is possible to express a judgment of strong preference. Each class is 
characterized by an abstract, made up of the intrinsic financial value of its supplies. 

By geometrically representing the supplies (T,S) on the plane OTS, a class of 
equivalent supplies is identified by a curve, a locus of points P  [T,S], 
corresponding to equivalent supplies. The infinite curves do not have common 
points. In addition: 

1) for each point in the plane there is one and only one curve, which is a locus of 
equivalent points;  

2) such curves are the graph of functions S = (T) (continuous and 
differentiable, under suitable hypotheses) and, if the postulate on money return 
holds, increasing where positive, decreasing where negative. 

The classes of equivalent supplies on the basis of an SD, i.e. the elements of the 
quotient set / , form a totally ordered set, because the elements of each couple are 
comparable for a weak preference judgment , using the meaning specified in 
section 1.2. Moving monotonically towards the classes (= curve in the plane OTS), 
the intrinsic financial value of the supplies improves in one sense (but gets worse in 

                                   
15 It is well known that equivalence relations E on the elements of a set H make it possible to 
stratify these elements in equivalence classes, such that each element is only in one class. 
Each class is characterized by an abstract common to its elements, indicating by quotient set 
H/E the set whose elements are the abstracts. 
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the other sense)16. It follows that the SD laws, on the basis of stratification in 
equivalence classes, allow a global, rather than just local, comparison between 
                                   
16 We set out the definition of some properties that are applied in the set of financial supplies. 
Let  be a set and  a binary relation between elements a, b, c, ...  . The following 

properties can hold for  (where = means coincidence between elements, ~ means negation, 

 means union or logic sum and  means intersection or logic product):  
1) reflexive property: a  a, a  ; 2) symmetric property: a  b b  a,  a,b  ; 3) 

transitive property: (a  b) ((b  c) a  c; a,b,c  ; 4) non-reflexive property: ~(a  a), 

a  ; 5) anti-symmetric property: (a  b) (b a) a=b; a,b ; 6) asymmetric 

property: a  b  ~(b  a), a,b  ; 7) completeness property: (a  b) b  a) is certainly 

verified, i.e. at least one of (a  b) and (b  a), a b   holds.  

We have already talked about the first three properties, pointing out that a binary relation 
between elements of  is an equivalence relation  if for every choice of elements the 

symmetric, reflexive and transitive properties hold. When a,b   it is verified that (a  b) 

~(a  b), and then (a  b) is an event, in the logic meaning, referred to elements of . We 

give the following definition regarding ordering. A binary relation  on the set  is called a 

relation of partial order if for each element in  the reflexive, anti-symmetric and transitive 

properties hold.  is then said to be partially ordered. With this hypothesis, if all elements 

of  are comparable two by two (= completeness property), then the relation is called of total 

order and  is said to be totally ordered. A binary relation  on the set  is said to be 
almost ordered or preordered (total or partial, if it is comparable or not) if the reflexive or 
transitive properties hold when it is then called almost ordered (partially or totally). Briefly, 
an order relation  brings to a classification which do not consider “equal elements” while a 

almost order relation  allows “equal elements”.  

 Note that if on the set  a total  relation holds, the completeness relation is satisfied, 

i.e. however chosen b  , a  , a b, it certainly satisfied that (a b) (b a). Given 

that (a  b) (b  a) = [(a b) ((b  a)] [(a  b)(~(b  a)] [~(a  b)((b  

a)] and that the three possibilities written between square brackets in the second term are 
incompatible, they make a partition. More briefly, the completeness derived from the totality 
of  is equivalent to the possibility of the realization of ~(a  b) ~(b  a). 

 Let us now consider the equivalence relation , such that a  b if the first possibility is true 

i.e. (a  b)  (b  a); in such a case we write a b. If the second or third possibility is 

true, we write respectively a b and b a. Relation  (or ) is said to be a (strong) 
preference, characterized by the asymmetric property. Writing a b is equivalent to b a. In 
conclusion, as a consequence of the relation  in , of the three possibilities, a b, a b, 

a b, one and only one is verified. With a fixed , the quotient set / , i.e. the set of the 
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supplies, i.e. due to transitivity they make it possible to extend to any number of 
supplies on the plane OTS the preference or indifference relations introduced in 
Chapter 1 with respect to a given supply. 

It is easy to give a method for such a comparison, verifying the existence of total 
order in  . It is enough to identify the classes using supplies that have the same 
maturity T0; then class  identified by (T0,S'0) is preferred to class  identified by 
(T0,S"0) if S'0 > S"0;  is preferred to  if S'0 < S"0;  and  are equivalent if  
S'0 = S"0. 

Let us consider some characteristic properties of decomposable laws of two 
variables, which proceed from the following theorems. 

THEOREM B.– Referring to definitions (2.10) and (2.13), an interest law is weakly 
decomposable if and only if, for each choice of subsequent times X<Y<Z, the initial 
accumulation factor from Y to Z is equal to the continuing accumulation factor from 
Y to Z of an accumulation started in X. In symbols: r(X;Y,Z)=r(Y;Y,Z)=m(Y,Z). 
Therefore, the decomposability implies independence of r(X;Y,Z) from the time of 
investment, and vice versa. There is an analogous condition in relation to the 
discount factors (2.17) and (2.20), for each choice of time X>Y>Z holds for a 
weakly decomposable discount law. 

THEOREM C.– An interest law is weakly decomposable if and only if the 
instantaneous intensity (X,T), continuous by hypothesis, does not depend on the 
initial time X but only on the current time T. The analogous condition on the 
intensity X,T) holds for a weakly decomposable discount law. Under the same 
condition necessary and sufficient on the instantaneous intensity of interest and 

                                                                                                                  
equivalence classes with respect to  of the elements in , results totally ordered because 

between the classes {a}, {b} identified by a, b only one relation holds: {a}={b}, {a} {b}, 
{a} {b}. To summarize, an almost order relation (total) on  induces an equivalence 

relation  and then an order (total) relation on / . 
 In financial applications it follows that if the exchange law applicable to the supplies 
(T,S)   is strongly separable and then follows from an equivalence relation , then:  

1) There is an almost order between each supply   (total if the law is applicable to all 
supplies) where between two supplies or there is indifference or one is preferred (strongly). 
There is then the possibility of “equals” or indifference. 
2) There is order (total in the same hypothesis) between supply equivalence classes, elements 
of / , where between two different classes there is always a strong preference relation, 

regarding each pair of supplies each taken in a class. In formula, {a} {b}  a b,  (a 
{a}, b {b}). 
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discount, a strong decomposability of an exchange law specified by the factor 
identified by (2.5') which satisfies (2.9) can be verified. 

THEOREM D.– An exchange law specified by the factor identified by (2.5') which 
satisfies (2.9) is strongly decomposable if and only if there exists an increasing 
function h(T) such that 

    
z(X,Y) =  

h(Y)

h( X)
   ,  (X,Y)

  (2.35) 

Given z(.) = m(.), (2.35) (X Y) gives a WD condition for an interest law (= of 
prospective transitivity for ); furthermore, (2.35), X Y), and given z(.) = a(.), is 
WD condition for a discount law (= of retrospective transitivity for ). If  is not 
symmetric, i.e. (2.9) is not valid, we have weak decomposability of interest and the 
discount law is not conjugated following  if and only if there exist two different 
functions h1(T) and h2(T) such that (2.35) holds where: h(T) = h1(T) if X Y; h(T) = 
h2(T) if X>Y 17. 

Briefly, theorems C and D show that: 1) a characteristic property of strongly 
decomposable exchange laws is the coincidence of interest and discount intensity in 

                                   
17 The proofs of theorems B, C and D are as follows:  

– theorem B is proved by noticing that, with respect to the interest (or discount) laws, the 
equality between m(Y,Z) and m(X,Z)/m(X,Y) (or between a(Y,Z) and a(X,Z)/a(X,Y)) bi-implies 
(2.28) or (2.31);  

– theorem C is proved, with respect to interest laws, by noticing that because of (2.17) 
and of theorem B the decomposability of law m is equivalent to the identity chain: 

   (X, )d Y
 Z

e  =  
m(X,Z)

m(X,Y)
 =  m(Y,Z) =   (Y, )d Y

 Z

e , (X<Y<Z) 

which, because of the arbitrariness of time, bi-implies (X, ) = (Y, ), i.e. because of the 
same arbitrariness, an intensity depends only on current time. An analogous proof holds in 
regard to the condition on the intensity (X,T) to have decomposability of the discount law, 

(X>Y>Z), and on the intensity condition (X,T) = (X,T) = (T) to have strong 
decomposability of the exchange law z(X,T), (X,Y,Z); 

– theorem D for exchange law is proved by noticing that: 
sufficient condition: if there is h(T) verifying (2.30), clearly z(X,X) = 1, X, and then (2.9) 
and (2.33) hold so that  =  and the exchange law is strongly decomposable,  
necessary condition: if z (X,Y) identifies a strongly decomposable law, because of theorem C 
the interest and discount intensity are expressed by the same function (T) and the requested 
function h(T), which is clearly defined regardless of a multiplicative constant, has the 
dimension and meaning of an amount valued in T and must satisfy the differential equation: 

h'(T) = (T)h(T), where the general expression h(T) =  k ( )d
0T

T

e  is assumed as having 

the meaning of valuation in T, based on the exchange law z of the amount k dated at time T0. 
Theorem D regarding conditions of weak decomposability is an immediate corollary. 
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a function (T) which depends only on current time; 2) the exchange factor of a 
strongly decomposable law assumes the characteristic form  

 (X, )d X
 Y

z(X,Y)=e   (2.36) 

 
EXAMPLE 2.4.– Give the following accumulation law  

0.05 0.002, Y X Y X Y Xm X Y e
 

using an instantaneous intensity t) = 0.05 + 0.004 t, a function only of the current 
time t, where m(X,Y) is a decomposable law. 

Let us verify the decomposability using (2.27). We obtain 

2 20.05 0.002
,

Z X Z X
m X Z e ; 

2 20.05 0.002
,

Y X Y X
m X Y e

  
2 20.05 0.002

,
Z Y Z Y

m Y Z e
 

then (2.6) (X<Y<Z) holds. 

If we put: X = 1; Y 5
5

12
5.417; Z 6

1

12
6.083, it results in  

0.05 4.417 0.002 28.344 0.277538,      1.319876 m X Y e e
 

0.05 0.666 0.002 7.659 0.048618,        1.049819 m Y Z e e
  

0.05 5.083 0.002 36.003 0.326156,      1.385632 m X Z e e
 

and then (summing the exponents of e) (2.6) is verified. Even the alternative 
expression following theorem B is verified as 

, 1.385632
; , 1.049819 , ; ,

, 1.319876

m X Z
r X Y Z m Y Z r Y Y Z

m X Y
 

EXAMPLE 2.5.– Given, with Y<Z, 

m(Y,Z) = 1+1.06Z – 1.06Y 
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satisfying m(Y,Y)=1, increasing with Z, decreasing with Y, resulting in: m(0,Z) = 

1.06Z. Put S1=1,450, Y 5
5

12
5.417, Z 6

1

12
6.083, it follows that 

m(Y,Z) = 1 + 1.425396 - 1.371140 = 1.054256 

and then: S2 = 1,528.67; initial per period rate = 0.054256; initial per period 
intensity = 0.081465 years-1. 

Given X = 1 it follows, in continuing terms, that: 

r X;Y,Z  
1 1.425396 1.06

1 1.371140 1.06
 

1.365396

1.311140
 1.04138  m Y,Z

 . 

This financial law is not decomposable. In addition:  

– the continuing per period rate is 0.041381;  

– the continuing per period intensity is 0.062078 years-1. 

2.5. Uniform financial laws: mean evaluations 

2.5.1. Theory of uniform exchange laws  

The hypothesis of uniformity (or homogenity) in time is common in financial 
practice. In formal terms, an indifference financial relation  is uniform in time if: 

 (X,S1)  (Y,S2)  (X+h,S1)  (Y+h,S2), h  (2.37) 

that is, an indifference relation is not changed by a time translation (i.e. moving X 
and Y of the same time interval forwards or backwards), as long as the payment 
times remain in the applicability interval of the financial law.  

Assuming the proportionality of amounts, because of (2.37) for the exchange 
factor z(X,Y) = S2 /S1 the following property is worth:  

z(X,Y) = z(X+h,Y+h), h  (2.38) 

To summarize: a uniform relation is characterized by the property that the 
exchange factor does not change with a rigid time translation such that the time 
difference Y - X = (Y +h) -(X +h) does not change. 
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It follows for the corresponding financial law (which we will call uniform) that 

z(X,Y)  g (Y-X)  g ( ) > 0, (2.39) 

that is, in a uniform law the exchange factor depends only on the duration (with 
sign) =Y-X of the financial operation and not just on the times X,Y of the beginning 
and the end of the operation, considered separately.  

If the relation  is uniform and also symmetric, the couples of conjugated interest 
and discount laws are expressed by the factors g( ) and g(- )18 satisfying 

g( ) g(- ) = 1, (2.40)

If the exchange law z(X,Y) is uniform on time, the contour curves z(X,Y) = const. 
are lines parallel to the bisector Y=X. Furthermore, if  is also symmetric, 
considering geometrically (2.40), the increasing graph of g( ) is such that the 
opposite values of  correspond with the reciprocal values of g( ). Such factors 
remain constant respectively on parallel lines equidistant of the bisector  = 0, from 
which z(X,X) = g(0) = 1 follows. 

Often the accumulation and discount factor, instead of being considered unified 
through g( ), are considered separately and expressed as a function of the (absolute) 
duration t = |Y–X| = | |. 

Obviously we have:  

t = , if  > 0; t = - , if  < 0. 

We can then put a correspondence between a uniform relation , which is 
characterized by a exchange factor g( ), defined , and two laws, the former of 
interest, expressed by an accumulation factor u(t), the latter of discount, expressed 
by a discount factor v(t), both defined t 0 in the following way:  

  

u(t) =  g(t) =  g( ) ,   if   =  t >  0 

u(0) =  v(0) =  g(0) =  1

v(t) =  g( ) =  g(-t) , if   = -t <  0   (2.41) 

In (2.41), the second equation express the reflexive property of ; the first and 
the third equation express respectively the exchange factor in accumulation and 
discount. By assuming the usual hypothesis of onerous nature of a loan, u(t)  1 is a 

                                   
18 More precisely, in an accumulation law, the result is  = Y-X > 0 and g( ) is the 
accumulation factor, whereas g(- ) = 1/g( ) is the conjugate discount factor from Y to X. 
However, in a discount operation, the result is  = Y-X < 0 and g( ) is the discount factor 
while g(- ) = 1/g( ) is the conjugated accumulation factor from Y to X. 
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strictly increasing function of the duration t, and v(t), subject to 0 < v(t)  1, is a 
strictly decreasing function of t. 

If  is also symmetric, from (2.40) and (2.41) it follows that: 

u(t) v(t) = 1, t > 0  (2.42) 

that is, the accumulation and the discount factors for a fixed duration t are 
reciprocal. 

It is useful at this point to adopt for the uniform laws and for the exchange 
factors u(t) and v(t) the definitions and positions introduced for the factors m(X,Y) 
and a(X,Y). The following table is then obtained19. 

 
FACTORS, RATES AND INTENSITIES FOR UNIFORM LAWS 

Financial quantity Interest laws Discount laws 

I) initial accumulation factor for duration t u(t)  v(t) 

II) initial rate for duration t u(t) -1 1- v(t) 

III) initial intensity for duration t 
  

u(t) -1 

t
 

1- v(t) 

t
 

IV) continuing accumulation factor for the 
subsequent duration h after t 

u(t +h)

u(t)
 

v(t +h)

v(t)
 

V) continuing rate for the subsequent duration 
h after t 

u(t +h)

u(t)
-1  1-

v(t +h)

v(t)
  

VI) continuing intensity for the subsequent 
duration h after t 

u(t +h) - u(t)

h  u(t)
 

v(t) - v(t +h)

h  v(t)
 

VII) instantaneous intensity in t (*) (t) =
u' (t)

u(t)
 (t) = -

v' (t)

v(t)
 

(*) (VII) is the limit case of (VI) when h 0 and assumes the derivability of exchange factors u(t) and 
v(t). Prime means differentiation. For simplicity, intensities are indicated with the same symbols  and 

used for those connected with law of two variables. 

Table 2.1. Factors, rates and intensities for uniform laws 

                                   
19 We notice that because of the invariance with translation following (2.39), it is possible 
and convenient to choose the time origin as X, the “beginning” time of the operation, and to 
measure time forwards (in interest laws) or backwards (in discount laws) for a time interval 
of length t. 
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From definition VII in Table 2.1, which expresses (t) and - (t) as logarithmic 
derivatives of u(t) and v(t), by inversion it follows that:  

u(t)  =    (z) dz
0

t

e ; v(t)  =    (z) dz
0

t

e   (2.43) 

 If the uniform interest and discount laws are conjugated (i.e. in the symmetry 
hypothesis), it results in (t) = (t) . In fact, it validates the theorem.  

THEOREM.– The necessary and sufficient condition in order for (2.42) to hold is 
the equality (t) = (t), t  0. 

Proof: 

Necessity: if (2.42) holds, it follows that t  0: ln u(t) = -ln v(t) and, 
differentiating, (t) = (t).  

Sufficiency: if (z) = (z), z  0, for (2.43) it follows, t  0, that 

  u(t) v(t) =    [( (z) (z)] dz
0

t

e  =  1 

because the integrand function is identically zero in the interval (0,t). 

Examples and applications of laws uniform in time will be shown in Chapter 3. 

2.5.2. An outline of associative averages 

Let us recall the concept of mean, as introduced by Chisini and developed by de 
Finetti20, from which the mean of quantities x1, x2, ..., xn with respect to a quantity y 
= f(x1, x2, ..., xn), which depends univocally on x1, x2,...,xn by the function f, is a 
value x̂  such that:  

f ( ˆ x , ˆ x ,..., ˆ x ) f (x1, x2, ...,xn)  (2.44) 

where if x1, x2,...,xn are replaced by ˆ x , f remains unchanged. In such a way the 
individuation of mean, which has a summarizing meaning, depends on the 
considered problem which constitutes a choice criterion.  

 

                                   
20 See, for example, de Finetti (1931); Volpe di Prignano (1985). 
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A mean is said to be associative when the same result is obtained, averaging out 
the given quantities (each with its weight) or averaging out the partial averages of 
their subgroup (each with the total weight of the subgroup). The consequent 
“associative property” is verified by the center of mass of a distribution of masses 

concentrated on the point of a line, a center whose abscissa x  = phh
xh / phh  

is the weighted arithmetic mean21 of the abscissas  xh  where the masses are put, 

with weights  ph corresponding to the masses. It can be proved (see the Nagumohy 

Kolmogoroff-de Finetti theorem) that, given the distribution   (xh , ph) , (h = 1, ..., n), 
the set of its associative averages coincides with the set of transformations of the 
arithmetic mean through a function q(x) chosen in the class of continuous and 
strictly monotonic functions. In other words, with q(x) continuous and strictly 
decreasing or increasing, the number ˆ x q , solution of the following equation in x 

( ) /h hh h h
q(x) =  q xp p

  (2.45) 

is an associative average of the values xh  with weights  ph  and all the others can be 
obtained by varying q(x) in the class specified above. Since q(x) has an inverse 
function q-1(x), we univocally obtain 

-1ˆ  = q  ( ) /q h h hh h
x q xp p

  (2.46) 

ˆ x q , called q-average, is invariant for linear transformation on q(x), because it 
follows from (2.45) that 

[ ( ) ] /h hh h h
a q(x)+b = a q x bp p

 

The more important averages used in applications are associative.22 

The following properties hold: 

1) the geometric mean can be obtained as the limit of the power mean when 
k 0;  

                                   
21 If the weights are all equal, the mean is called “simple”.  
22 Let us recall the mean of powers of order k, with transformation function q(x) = xk (the 
arithmetic mean for k = 1, the quadratic mean for k = 2, and the harmonic mean for k = -1), 
the geometric mean for q(x) = log x, and the exponential mean for q(x) = ecx. 
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2) with the same data, power means with exponent k give values increasing 
with k; 

3) the inequality between ˆ x q  and x  depends on the feature of q(x), resulting: 

– ˆ x q  > x , if q(x) is increasing convex or decreasing concave, 

– ˆ x q  < x , if q(x) is increasing concave or decreasing convex. 
 
The concavity and convexity are, as usual, downwards. 

The aforementioned properties are shown in Figure 2.3, which explains the 
calculation of a simple associative average of two elements. 

(a) (b)

 
Figure 2.3.a Associative average with convex q(x) 

Figure 2.3.b Associative average with concave q(x) 

2.5.3. Average duration and average maturity 

Let us consider a financial relation  expressed by a law with an always positive 
intensity, and suppose that the exchange factors q(t) consequent to  are continuous 
and strictly monotonic of the duration. 

Let us also consider the following problem: given the amounts K1, K2, ..., Kn 
accumulated or discounted according to the same exchange law q(t) and the 
respective durations t1, t2, ..., tn, we want to find the duration  ˆ t q  of investment (or 

discount) according to q(t) of the amount K = h hK  so as to have the same 
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interest (or discount) obtainable as with the original operation on the n amounts K1, 
K2,..., Kn

23. 

Under these assumptions the value ˆ t q  is univocally determined and is called the 

average length (or average maturity, choosing 0 as starting point) of the operation. 
This makes it possible, having fixed the starting time T0 (i.e. the beginning of the 
investment or maturity of the amount to be discounted), to find the average maturity 
T1 = T0 + ˆ t q  (in accumulation) or T1 = T0 - ˆ t q  (in discounting).  

The average length  ˆ t q  depends on the choice of q(t) and can be found by using 

(2.46) with  ˆ x q =  ˆ t q , ph = Kh, xh = th. Based on the financial meaning, in 

accumulation the interest obtained with the n investments based on the factor q(t) = 

u(t) for the given times th is Khh 1
n u(th) 1 , while that obtained with only one 

investment of Khh 1
n  for the time t is 

 
( Khh 1

n ) u(t) 1 ; these values are the 

same if t =  ˆ t q . The position is analogous in discounting with q(t) = v(t). This proves 

the following theorem. 

THEOREM.– In a financial operation of investment or discount of more than one 
amount with different durations th, the average length ˆ t q  is associative and 

coincides with the q-average of the lengths, weighted with the amounts Kh, where 
the transformation function q(t) coincides with the factor u(t) or v(t), respectively in 
an accumulation or discount operation.  

2.5.4. Average index of return: average rate 

Let us consider the following problem of averaging. Let us invest for the same 
duration t the amounts C1, C2,...,Cn by using accumulation laws (for simplicity 
following the same regime) with different returns, based on the factors u1(t),..., 
un(t). We want to find the accumulation factor that leaves the total interest 
unchanged for the same duration t. The solution is: 

ˆ u (t) Chuh(t) /
h 1
n

Chh 1
n

  (2.47) 

                                   
23 The financial operations with n>2 amounts, which are called complex, will be discussed in 
Chapter 4.  
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The same result is obtained for a discount of length t, with factors vh(t) applied 
at maturity to the amounts Mh. 

The following theorem is then proved. 

THEOREM.– Applying different exchange factors to different amounts for the same 
duration t, in accumulation or discount operations, the factor which does not 
change the returns is the arithmetic average of factors weighted with the amounts. 

If the accumulation factors uh(t) can be expressed t with the same invertible 
function q(ih;t) of the interest rates ih (h = 1,...,n), the mean rate  ˆ i q (t)  is defined by 

-1

1 1
ˆ ( )   ( ; ) /

n n

q h h hh h
i t q C q i t C

  (2.48) 

In the same way, the mean rate  ˆ d q (t)  of the discount rates dh (h = 1,...,n) is 
defined for discounting, using in (2.48) the discount factors q(dh;t) instead of the 
accumulation factors q(ih;t) and the capitals at maturity Mh instead of the invested 
capitals Ch. 

2.6. Uniform decomposable financial laws: exponential regime 

We have already shown the practical importance of uniform financial laws. In 
relation to a financial regime – defined as a set of financial laws, based on a 
common feature and identified in the set by a parameter – it is important to 
investigate the existence and the properties of regimes which are decomposable and, 
at the same time, uniform. Hence, given that the financial laws  

u(t) = e t   ;   v(t) = e- t                               
(2.49)

 

are called exponential laws and, by varying the parameters  and  they constitute 
the exponential regime (often considered in symmetric hypothesis i.e. = ), the 
following theorem holds. 

THEOREM.– The exponential regime, characterized by intensities constant in time, 
is the only one to be decomposable and uniform. 

Proof: 

1) If X  Y  Z, given Y - X = t1, Z - Y = t2 and then Z - X = t1+t2, if  is 
uniform, it follows that: m(X,Y) = u(t1); m(Y,Z) = u(t2); m(X,Z) = u(t1+t2). From 
(2.27), because of decomposability, we obtain the following characterization of 
decomposable and uniform interest laws:  
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u(t1) u(t2) = u(t1+t2); (t1  0, t2  0)  (2.50) 

2) If X  Y  Z, given X - Y = t1, Y - Z = t2 and then X - Z = t1+t2, if  is uniform, 
it follows that a(X,Y) = v(t1); a(Y,Z) = v(t2); a(X,Z) = v(t1+t2). From (2.30), because 
of decomposability, we obtain the following characterization of decomposable and 
uniform discount laws: 

v(t1) v(t2) = v(t1+t2); (t1  0, t2  0)  (2.50') 

It is known that in the hypothesis that is valid for u(t) and v(t), the functional 
equations (2.50) and (2.50') are satisfied only by exponential functions; this proves 
the theorem24. 

If  is uniform and strongly decomposable, and then symmetric, in (2.49) this 
results in . The exchange factors then assume the form 

 g(t) = e
t
, t   (2.51) 

which satisfies (2.40). Equation (2.51), which is a particular example of (2.36), 
summarizes the exponential regime in the symmetric hypothesis and for all choices 
of  identifies an exchange law that is strongly decomposable and uniform. Briefly, 
the exchange exponential laws, and only those laws, correspond to indifferent 
relations that are equivalences that are uniform in time25.  

                                   
24 The previous result can be deduced directly by observing that intensity depends on the 
initial time X and on the current time T, but if the law is decomposable the intensity must 
depend at the most on T, X, while if the law is uniform the intensity must depend at the 
most on T-X. Then if the law is decomposable and uniform, both principles X being valid, it 
is necessary and sufficient that the intensity does not depend on any time variables, and it is 
constant; for compound accumulation laws, which in the continuous case lead to the 
exponential laws, see Chapter 3.  
25 In the strongly decomposable and uniform law, which follows from a relation of uniform 
equivalence, the curves S = (T), which correspond to the equivalence classes that are 
characterized, because of uniformity, by the further property of invariance by translation. 
Therefore, they follow by only one curve, which is translated continuously with a movement 

rigid and parallel to the time axes. The exponential curves S k e  T  e (T -T' )
(where T' = 

ln k/ ) are obtained, such that all the supplies equivalent to (T0,S0), so that all the supplies 

and only them, are represented by a point on the curve obtained putting k =  S0 e T0 . 


